Notes

A New Flavonoid Glycoside from Centaurea horrida

Guido Flamini, ${ }^{,{ }^{\dagger} \dagger}$ Claudia Bulleri, ${ }^{\dagger}$ Ivano Morelli, ${ }^{\dagger}$ and Antonio Manunta ${ }^{\ddagger}$
Dipartimento di Chimica Bioorganica e Biofarmacia, Via Bonanno 33, 56126 Pisa, Italy, and Istituto di Botanica e Orto Botanico, Via Bramante 28, 61029 Urbino, Italy

Received December 17, 1999
A new natural compound, horridin (1), was isolated from the aerial parts of Centaurea horrida. Its structure as quercetin 3-O- $\alpha-$-L-rhamnopyranosyl-($1 \rightarrow 2$)- $\alpha-$ L-rhamnopyranoside was determined by spectroscopic methods, including 2D NMR.

Centaurea horrida Bad. (Asteraceae), known in Italy as "fiordaliso spinoso", is a thorny shrub with tortuous, entangled branches. The leaves are completely transformed into pinnate thorns, $20-30 \mathrm{~mm}$ long, while the capitula are small ($4-5 \mathrm{~mm}$) and pale, with purple apexes. This very peculiar habitus is the result of an adaptive process to the arid marine habitat, and it makes the plant a unique case among the Italian Asteraceae; it is considered a species of great antiquity. ${ }^{1}$
C. horrida is strictly endemic to North Sardinia (Italy), where it lives only in particular separate small areas. ${ }^{1,2}$ The plant is not used in Italian folk medicine, although other species of the same genus (i.e., Centaurea cyanus and Centaurea scabiosa) are used against coughs and as ophthalmic drugs. ${ }^{3}$ The studies on this genus deal mainly with sesquiterpene lactones, while flavonoids are less investigated; there have been no previous reports on constituents from C. horrida. This paper deals with the isolation and characterization of a new flavonoid glycoside (1).

(1)

The negative FABMS of horridin (1) gave a peak at m/z 593, $[\mathrm{M}-\mathrm{H}]^{-}$, corresponding to the molecular formula $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}$, supported also by elemental analysis. The ${ }^{13} \mathrm{C}$ NMR spectrum showed 27 resonances, sorted by DEPT experiments into $2 \mathrm{CH}_{3}, 15 \mathrm{CH}$, and 10 quaternary C . In the ${ }^{1}$ H NMR spectrum are two coupled doublets, at $\delta 6.24$ and 6.29, typical of two meta-related $\mathrm{H}-6$ and $\mathrm{H}-8$ protons

[^0]of ring A of a flavonoid unit. The ABM system of ring B (δ $7.31, \mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz} ; 7.28$, dd, J $=8.2,1.9 \mathrm{~Hz} ; 6.89, \mathrm{~d}, \mathrm{~J}=$ 8.2 Hz) permits identification of the aglycon as quercetin. Moreover, a one-proton broad singlet was present at $\delta 5.32$ and an anal ogous signal, partially overlapped by the water signal, was at $\delta 4.79$. A third one-proton broad singlet was visible at $\delta 4.21$. These three broad singlets were really three doublets with very small J values, as shown by the COSY experiment, which displayed cross-peaks between the resonance at $\delta 5.32$ and that at $\delta 4.21$, and between each of the signals at $\delta 4.79$ and 4.21 and the not-resolved area between 3 and 4δ. Finally, two partially overlapped three-proton doublets ($\mathrm{J}=5.7 \mathrm{~Hz}$) at $\delta 0.94$ and 0.90 were present. This suggested the presence of two deoxysugars having an α-configuration because of the very low J values of their anomeric protons due to trans-diequatorial interactions. The $\mathrm{H}-2$ resonance of one sugar was unusually downfield ($\delta 4.21$), probably because of the $1 \rightarrow 2$ interglycosidic linkage of the sugar moiety. Analysis of the ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the identity of the aglycon as quercetin and the two sugar units as $\alpha-\mathrm{L}$-rhamnose. Due to typical shifts experienced by the inner rhamnose (signals were displaced downfield by 6.0 ppm for $\mathrm{C}-2^{\prime \prime}$ and upfield of 1.6 and 0.6 ppm for $\mathrm{C}-1^{\prime \prime}$ and $\mathrm{C}-3^{\prime \prime}$, respectively, from those of quercetin 3-O-rhamnoside ${ }^{4}$), it was possible to confirm the $1 \rightarrow 2$ interglycosidic linkage. The values are also in good agreement with those from analogous compounds. ${ }^{5,6}$ Placement of the disaccharidic moiety at C-3 was determined on the basis of the typical glycosylation shifts that occurred with respect to the aglycon quercetin: ${ }^{7}$ downfield shifts of C-2 and C-4 (about 8.5 and 3.0 ppm , respectively) and an upfield shift of $\mathrm{C}-3$ (about 1.5 ppm). Therefore, 1 is quercetin 3-O- $\alpha-L-$-rhamnopyranosyl-($1 \rightarrow 2$)-α-L-rhamnopyranoside, which we have named horridin. This structure is supported by its negative FABMS spectrum where, besides the molecular peak at m/z 593, [M -$\mathrm{H}]^{-}$, there were peaks due to loss of a rhamnose at m / z 447, $[\mathrm{M}-\mathrm{H}-146]^{-}$, and of two rhamnose units at m / z 301, [M - H - 292] ${ }^{-}$. Finally, acid hydrolysis of 1 liberated rhamnose and quercetin, identified by TLC with authentic samples.

Experimental Section

General Experimental Procedures. Melting points (uncorrected) were determined with a Kofler apparatus; optical rotations were measured on a Perkin-E Imer 241 polarimeter;

FABMS were recorded (negative mode) with a VG ZAB instrument; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a Bruker AC200 spectrometer in $\mathrm{CD}_{3} \mathrm{OD}, \mathrm{DMSO}-\mathrm{d}_{6}$, and CDCl_{3}, using TMS as internal standard. All 1D and 2D NMR experiments were performed using the standard Bruker library of microprograms.

The following adsorbents were used for purification: flash chromatography, Merck Kieselgel 60 (230-410 mesh); Iowpressure chromatography, Merck Lobar Lichroprep RP_{8} and $\mathrm{RP}_{18}(31 \times 2.5 \mathrm{~cm})$; size-exdusion chromatography, Pharmacia Fine Chemicals Sephadex LH-20; analytical TLC, Merck Kieselgel $60 \mathrm{~F}_{254}$ precoated plates; chromatograms were visual ized under UV light at 254 and 366 nm and/or sprayed with Komarowsky or cerium sulfate or Naturstoffereagenz A-PEG reagents.

Plant Material. The flowered aerial parts of C. horrida were col lected at Capo Falcone, Stintino, Sassari, Italy, in May 1998. A voucher specimen (no. 3214/97 URB) is deposited in the Herbarium of Urbino Botanical Garden.

Extraction and Isolation. The dried and ground aerial parts (950 g) were extracted successively in a Soxhlet apparatus with n-hexane, $\mathrm{CHCl}_{3}, \mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)(4 \mathrm{~L} \times 25$ h) and, at room temperature, with $\mathrm{MeOH}(2.5 \mathrm{~L} \times 7$ days \times 3). After removal of solvents in vacuo at up to $40^{\circ} \mathrm{C}$, the following residues were obtained: $\mathrm{R}_{\mathrm{H}}(12.4 \mathrm{~g}), \mathrm{R}_{\mathrm{C}}(7.1 \mathrm{~g}), \mathrm{R}_{\mathrm{CM}}$ (9.1 g), and $\mathrm{R}_{\mathrm{M}}(18.2 \mathrm{~g})$.
R_{M} was suspended in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (7:3) and extracted, in turn, with EtOAc and $n-\mathrm{BuOH}$ obtaining, after removal of the sol vents, the residues $R_{\text {MAc }}$ and $R_{\text {MBu }}$. The former, after sizeexclusion chromatography on Sephadex LH-20 with MeOH and Si gel column chromatography eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($7: 3$) yielded compound $\mathbf{1}(5 \mathrm{mg}$), horridin, which appears on TLC as an orange spot after treatment with Naturstoffereagenz A-PEG.

Horridin (1): yellowish amorphous solid; $[\alpha]^{20}{ }_{D}-55.6^{\circ}$ (c $0.11, \mathrm{MeOH}$); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 362$ (4.12), 265 (sh) (3.95), 261 (4.42) nm; ($\mathrm{MeOH}+\mathrm{AICl}_{3}$) 433 (4.88), 301 (sh) (3.44), 277 (4.94) nm; $\left(\mathrm{MeOH}+\mathrm{AlCl}_{3}+\mathrm{HCl}\right) 400$ (4.20), 360 (sh) (3.39), 302 (3.51), 274 (4.76) nm; ¹H NMR (CD $\left.{ }_{3} \mathrm{OD}, 200 \mathrm{MHz}\right) \delta 0.94$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime \prime}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 4.21$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-2^{\prime \prime}$), 4.79 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1^{\prime \prime \prime}$), 5.32 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-1^{\prime \prime}$), $6.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{H}-6), 6.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{H}-8)$, 6.89 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), $7.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.9 \mathrm{~Hz}$, H-6'), 7.31 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$), 50 $\mathrm{MHz}) \delta 178.2$ (s, C-4), 164.4 (s, C-7), 161.3 (s, C-5), 156.8 (s, $\mathrm{C}-9$), 156.5 ($\mathrm{s}, \mathrm{C}-2$), 148.6 ($\left.\mathrm{s}, \mathrm{C}-4^{\prime}\right), 145.0$ ($\mathrm{s}, \mathrm{C}-3^{\prime}$), 133.8 (s , C-3), 122.2 (s, C-1'), 122.0 (d, C-6'), 116.3 (d, C-5'), 115.7 (d, C-2'), 104.1 ($\mathrm{s}, \mathrm{C}-10$), 101.5 ($\mathrm{d}, \mathrm{C}-1^{\prime \prime \prime \prime}$), 100.3 ($\mathrm{d}, \mathrm{C}-1^{\prime \prime}$), 99.0 (d , C-6), 94.4 (d, C-8), 76.4 (d, C-2"), 71.9 (d, C-4"'"), 71.8 (d, C-4"), 70.5 (d, C-3"'), 70.4 (d, C-5"), 70.2 (d, C-2"'), 70.0 ($d, C-3^{\prime \prime}$), 69.6 (d, C-5"'"), 17.7 (q, C-6"), 17.4 (q, C-6"'"); FABMS (negativeion mode) m/z 593 [M - H] (16), 447 [M - H - 146] ${ }^{-}$(7); 301 [M - H - 292] (28); anal. C 54.82\%, H 4.87, calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{15}, \mathrm{C} 54.55 \%$, H 5.09\%.

References and Notes

(1) Pignatti, S. Flora d'Italia; Edagricole: Bologna, 1982; Vol. 3, p 183.
(2) Desole, L. Webbia 1956, 12, 251-324.
(3) Poletti, A. Fiori ePianteMedicinali; Musumeci Editore: Milano, 1978; Vol. 1, p 152.
(4) Markham, K. R.; Ternai, B.; Stanley, R.; Geiger, H.; Mabry, T. J. Tetrahedron 1978, 34, 1389.
(5) Li, W. K.; Zhang, R. Y.; Xiai, P. G. Phytochemistry 1996, 43, 527.
(6) Braca, A.; Bilia, A. R.; Mendez, J ., M orelli, I. Phytochemistry 1999, 51, 1125.
(7) Ternai, B.; Markham, K. R. Tetrahedron 1976, 32, 565.

NP990627Z

[^0]: * Address for correspondence. E-mail: flamini@farm.unipi.it.
 ${ }^{\dagger}$ Chimica Bioorganica e Biofarmacia, Pisa.
 \ddagger Istituto di Botanica e Orto Botanico, Urbino.

